• Services
  • Blog

    Cars

    CarsOffersDiscountsCar Search

    Orders

    Car Individual BuyCar Company BuyService Buy

    About Company

    About UsServicesWhy SalehBlogs

    Contact Us

    BranchesContact UsFAQsJoin Us

    Terms And Conditions

    Terms ConditionsPrivacy Policy

    Download Our App

    Google PlayApp Store

    Newsletter

    Subscribe to receive our latest offers


    2025 Saleh Cars Group
    TikTok
    1. Blogs
    2. The Difference Between Hybrid and Electric Cars

    The Difference Between Hybrid and Electric Cars

    Table Of Contents:

    • What is a Hybrid Car?
    • What is an Electric Car?
    • Comparison Between Hybrid and Electric Cars
    • Advantages and Disadvantages of Hybrid and Electric Cars
    • Which Car is Best for You?
    • Conclusion

    The Difference Between Hybrid and Electric Cars: A Comprehensive Guide

    With the rapid advancement of the automotive industry and the increasing focus on environmental sustainability, hybrid and electric cars have become two main options for those looking to reduce carbon emissions and save fuel. But what is the difference between them? And which one is the best choice for you?

    In this article, we will provide a comprehensive comparison between hybrid cars and electric cars, highlighting key differences, advantages, disadvantages, and which one suits different users best.

    What is a Hybrid Car?

    A hybrid car is a vehicle that combines an internal combustion engine (running on gasoline or diesel) with an electric motor. These two power sources work together to enhance fuel efficiency and reduce emissions. There are different types of hybrid cars, including:

    Types of Hybrid Cars:

    1. Traditional Hybrid (HEV - Hybrid Electric Vehicle):

      • Primarily relies on the fuel engine, but the electric motor assists in improving performance and fuel efficiency.
      • Does not require external charging; the battery is charged through regenerative braking and excess energy from the engine.
      • Example: Toyota Prius, Honda Insight.
    2. Plug-in Hybrid (PHEV - Plug-in Hybrid Electric Vehicle):

      • Has a larger battery than traditional hybrids and can be charged via an external power source.
      • Can travel short distances using only electric power before switching to fuel when the charge runs out.
      • Example: Mitsubishi Outlander PHEV, BMW X5 xDrive45e.

    What is an Electric Car?

    An electric car (EV - Electric Vehicle) relies entirely on an electric motor with no internal combustion engine. It gets its power from a rechargeable battery and can be charged at home or at public charging stations.

    Types of Electric Cars:

    1. Battery Electric Vehicles (BEV - Battery Electric Vehicle):

      • Operate solely on electric power.
      • Produce zero carbon emissions while driving.
      • Charging time depends on battery capacity and the charger used.
      • Example: Tesla Model 3, Nissan Leaf, BMW i4.
    2. Fuel Cell Electric Vehicles (FCEV - Fuel Cell Electric Vehicle):

      • Generate electricity from hydrogen instead of using conventional batteries.
      • More efficient and quicker to refuel compared to battery-powered electric cars.
      • Example: Toyota Mirai, Hyundai Nexo.

    Comparison Between Hybrid and Electric Cars

    Feature Hybrid Cars Electric Cars
    Power Source Combination of fuel and electricity Fully electric
    Emissions Lower than traditional cars but still emit some carbon Zero emissions
    Driving Range Longer due to the use of both fuel and electricity Limited to battery range (depends on capacity)
    Charging Time No need for external charging (except for PHEV) Requires charging, which can take hours depending on the charger
    Fuel Costs Lower than traditional cars but still requires some fuel No fuel cost, but depends on electricity prices
    Upfront Cost Cheaper than fully electric cars but more expensive than traditional cars Generally more expensive due to battery costs
    Infrastructure Needs No charging stations required, only fuel stations Requires access to charging stations
    Environmental Impact Less pollution than fuel cars but still contributes to emissions Completely eco-friendly

    Advantages and Disadvantages of Hybrid and Electric Cars

    Advantages of Hybrid Cars:

    ✅ Improved fuel efficiency compared to conventional cars.
    ✅ Longer driving range due to the combination of fuel and electric power.
    ✅ No need for advanced charging infrastructure.
    ✅ Lower initial cost compared to fully electric cars.

    Disadvantages of Hybrid Cars:

    ❌ Still emit carbon emissions.
    ❌ Maintenance can be complex due to the presence of both a fuel engine and an electric motor.
    ❌ Limited electric-only performance compared to fully electric vehicles.

    Advantages of Electric Cars:

    ✅ Zero carbon emissions, making them environmentally friendly.
    ✅ Quieter driving experience as there is no combustion engine.
    ✅ Lower operating and maintenance costs, as there is no need for oil changes or many mechanical components.
    ✅ High performance and faster acceleration due to instant torque from electric motors.

    Disadvantages of Electric Cars:

    ❌ Limited driving range compared to hybrid and traditional cars.
    ❌ Requires an extensive charging infrastructure.
    ❌ Charging times can be long compared to refueling.
    ❌ Higher upfront cost, although some countries offer incentives.

    Which Car is Best for You?

    Choosing the right car depends on your needs and driving habits:

    ✅ Choose a Hybrid Car if:

    • You want a fuel-efficient car without worrying about charging stations.
    • You frequently drive long distances.
    • You want a balance between electric power and fuel reliability.

    ✅ Choose an Electric Car if:

    • You prefer an environmentally friendly mode of transportation.
    • You have access to home charging or nearby charging stations.
    • You do not drive long distances daily (or have another car for longer trips).
    • You want to reduce operating and maintenance costs in the long run.

    Conclusion

    Both hybrid and electric cars have their advantages and disadvantages. If you want to transition to an eco-friendly car but are not ready to give up fuel completely, a hybrid car might be the best choice. On the other hand, if you are fully prepared to switch to clean energy, an electric car is the way to go. With continuous technological advancements and improvements in charging infrastructure, electric cars are becoming an increasingly popular choice for the future.


    Would you like any modifications or additional details for the article? 🚗⚡

    Related Blogs

    FAQs

    The Hidden Dangers of Using the Wrong Radiator Fluid

    The Hidden Dangers of Using the Wrong Radiator Fluid

    Table Of Contents:

    • What Is Radiator Coolant?
    • Types of Radiator Coolant and Their Differences
    • Causes of Coolant Boiling in the Radiator
    • Causes of Coolant Loss in the Radiator
    • When Should You Change Your Coolant?
    • What’s the difference between green and red coolant?
    • Can you mix coolant colors?

     

     

     

    Many drivers overlook the importance of radiator coolant color, assuming it's just cosmetic. But choosing the wrong type can lead to serious engine damage. So, what are the differences between coolant types—and which one is right for your car?

     

    What Is Radiator Coolant?

    Radiator coolant, also known as antifreeze, is a chemical compound used to regulate engine temperature. Its primary function is to prevent the engine from overheating in hot conditions or freezing in cold ones, protecting internal components from corrosion and damage.

    Coolant is typically made from ethylene glycol or propylene glycol, with added corrosion inhibitors and thermal stabilizers.

     

    Types of Radiator Coolant and Their Differences

    Coolants used in radiator systems fall into three main categories, each with distinct properties that directly affect engine performance and efficiency:

     

    1. Regular Water

    Although easily accessible, using plain water in the cooling system is unsafe. It contains high levels of salts and impurities that accumulate inside the radiator and engine components, causing corrosion, rust, and long-term damage.

    Water also boils quickly and freezes easily, making it unsuitable for temperature fluctuations.

     

    2. Green Coolant

    Green coolant is a balanced mixture of water and specially formulated chemicals designed to cool the engine efficiently without reacting with its metal components. Key features include:

    - Free from salts and impurities, preventing corrosion and rust

    - Boiling point raised to 120°C, making it effective in high-temperature conditions

    - Commonly used in older vehicles or those with iron-based components

    - Safe and effective, though its lifespan is shorter than other types

     

    3. Red Coolant

    Red coolant shares the impurity-free nature of green coolant but offers enhanced features:

    - Contains agents that prevent freezing in extremely low temperatures

    - Free from silicates, which can cause long-term corrosion in engine parts

    - Used in modern vehicles requiring extra protection for sensitive metal components

    - Longer lifespan than green coolant, ideal for cold climates

     

    Causes of Coolant Boiling in the Radiator

    Boiling coolant is a serious warning sign of a malfunctioning cooling system. Ignoring it can damage vital car components. Common causes include:

     

    • Faulty Thermostat: Regulates coolant flow between the radiator and engine. If it fails, the engine doesn’t receive adequate cooling, leading to overheating and boiling.
    • Cooling Fan Failure: The fan plays a crucial role in cooling the radiator. If it stops or underperforms, engine temperature rises, causing the coolant to boil.
    • Damaged Radiator Cap: Should be replaced every two years. A worn or loose cap affects system pressure and reduces the radiator’s ability to maintain proper temperature, contributing to boiling.

     

    Causes of Coolant Loss in the Radiator

    All coolant types can decrease over time due to mechanical or operational issues affecting system efficiency. Key causes include:

    • Faulty Thermostat: Disrupts temperature regulation, leading to coolant loss
    • Cooling Fan Malfunction: Reduces radiator cooling, increasing coolant consumption
    • Water Pump Failure: Responsible for circulating coolant to the engine; any damage causes noticeable fluid loss
    • Leaks or Cracks: In radiator pipes or the reservoir tank, leading to gradual coolant reduction
    • Heavy A/C Usage: Prolonged use increases pressure on the cooling system, accelerating coolant consumption

     

    When Should You Change Your Coolant?

    Coolant replacement depends on its type and chemical composition:

    - Red Coolant: Recommended every 4 to 5 years due to its long-lasting organic formula

    - Green Coolant: Should be replaced every 2 to 3 years, as its protective agents degrade over time

     

    What’s the difference between green and red coolant?

    Green contains silicates and has a shorter lifespan; red is silicate-free and lasts longer.

     

    Can you mix coolant colors?

    No. Chemical reactions between types can damage the cooling system.

     

    Launch event of the new 2026 Commander

    Launch event of the new 2026 Commander

     

    As part of strengthening strategic partnerships among leading companies in the automotive sector, Saleh Cars Group, in collaboration with Petromin, hosted a distinguished official event to unveil the all-new Commander 2026 model.

     

    The ceremony was attended by:

     

    • Terence Patrick Perrin – Chief Executive Officer
    • Rami Hankir – Senior Executive Director
    • Elias Abu Hasira – Executive Director of Wholesale Sales
    • Rohit Verma – Executive Director of Marketing

     

    Alongside a number of automotive industry enthusiasts.

     

    The event took place at Saleh Cars Group’s headquarters in Riyadh – Al Thumama Branch, at 3:30 PM on Tuesday, October 14, 2025.

     

    The launch showcased the vehicle’s latest features and advanced technologies, reflecting both companies’ vision to deliver cutting-edge models to the Saudi market.

     

     

     

    The Differential in Cars What It Is, How It Works, and Why It Matters

    The Differential in Cars What It Is, How It Works, and Why It Matters

    Table Of Contents:

    • What Is a Car Differential
    • How Does the Differential Work
    • What Are the Components of a Differential
    • Why Is the Differential Important
    • What Are the Types of Differentials
    • What Are the Symptoms of a Faulty Differential
    • What Causes Differential Failure
    • What Is Differential Oil

    The differential is a hidden yet vital component that plays a key role in vehicle performance and stability. But do you really know how it works and what types exist?

     

    What Is a Car Differential

     

    • The differential is one of the core mechanical components in a vehicle’s drivetrain system. It plays a crucial role in converting engine power into balanced wheel movement. Its importance lies in its ability to distribute torque evenly, allowing the wheels to rotate at different speeds during turns. This ensures smooth maneuverability and enhances vehicle stability.

     

    How Does the Differential Work

     

    • The differential operates through a small gear known as the pinion, which connects to the driveshaft that transmits power from the engine. This gear meshes with a larger gear called the crown wheel, which then distributes motion to the axle shafts connected to the wheels.
    • This mechanism enables the wheels to rotate at varying speeds—an essential function for preventing excessive friction or skidding during cornering, thereby improving vehicle control and stability.

     

    What Are the Components of a Differential

     

    A differential consists of several interconnected parts that work in harmony to deliver optimal performance:

     

    - Gearbox: Transfers torque from the engine to the rest of the system and contains a set of gears that ensure balanced power distribution.

    - Internal Gears: Responsible for determining wheel speed and directing torque based on driving conditions.

    - Axle Shaft: Connects the wheels to the differential and ensures smooth and stable motion during driving.

     

    Why Is the Differential Important

     

    The differential plays a fundamental role in enhancing the driving experience. Its significance can be summarized as follows:

     

    - Allows the vehicle to turn smoothly without resistance or vibration.

    - Improves safety by evenly distributing power between the wheels, reducing the risk of losing control.

    - Facilitates driving over rough terrain by balancing torque between front and rear wheels, especially in four-wheel-drive vehicles.

     

    What Are the Types of Differentials

     

    Differentials vary depending on usage and driving conditions:

     

    - Open Differential: The traditional type that splits torque between wheels on the same axle. Commonly used in vehicles designed for paved roads.

    - Locking Differential: Distributes power equally between wheels, ideal for off-road vehicles requiring high traction.

    - Limited-Slip Differential: Reduces wheel spin when traction is lost and offers better control on slippery surfaces.

    - Torque-Vectoring Differential: Uses electronic sensors and control systems to precisely distribute torque based on road conditions. Found in high-performance and sports cars.

     

    What Are the Symptoms of a Faulty Differential

     

    When the differential begins to fail, several warning signs may appear:

     

    - Unusual noises from the wheels, such as clicking or grinding, which may indicate gear wear or low oil levels.

    - Vehicle vibrations during acceleration, often caused by internal damage or improper torque distribution.

    - Difficulty steering, especially during turns or on uneven roads, suggesting reduced system effectiveness.

     

    What Causes Differential Failure

     

    Several factors can lead to differential damage, including:

     

    - Low Differential Oil: Causes excessive friction and internal wear.

    - Contaminated Oil: Reduces cooling and lubrication efficiency, accelerating system deterioration.

    - Oil Leaks: Result from damaged seals or overheating, leading to insufficient lubrication.

    - Heavy or Aggressive Driving: Frequent off-road use or high-speed driving puts extra strain on the system, increasing the risk of failure.

     

    What Is Differential Oil

    Differential oil is essential for maintaining system efficiency. It reduces friction and cools internal components. Using the correct type and replacing it according to the manufacturer’s schedule is critical. Neglecting oil maintenance can result in complete system failure.

     

    Engine Valves Explained Function and Common Issues

    Engine Valves Explained Function and Common Issues

    Table Of Contents:

    • What Are Engine Valves in a Car?
    • How Do Engine Valves Work?
    • How Many Valves Does an Engine Have?
    • What Is Variable Valve Timing (VVT)?
    • Symptoms of Faulty Valves in a Car
    • Tips to Maintain Your Engine Valves
     
     

    Valves are among the most critical components of the internal combustion engine. But what exactly are they? And how can you maintain them properly?

     

    What Are Engine Valves in a Car?

    • Valves are metal components with a conical shape, installed in the engine head. They move in a reciprocating (up and down) motion to open and close the pathways for fuel intake and exhaust release.
    • Their proper function is essential for sealing and unsealing these passages during engine operation.

     

    How Do Engine Valves Work?

    • Intake Phase: The intake valves open to allow the air-fuel mixture to enter the combustion chamber.
    • Compression Phase: All valves close to compress the mixture before ignition.
    • Power Phase: The spark plug ignites the mixture, pushing the piston downward.
    • Exhaust Phase: Exhaust valves open to expel burnt gases from the combustion chamber.

     

    How Many Valves Does an Engine Have?

    • Older Engines: Typically have two valves per cylinder (e.g., a 4-cylinder engine = 8 valves).
    • Modern Engines: Commonly feature four valves per cylinder (two intake and two exhaust). Some sports cars may even have five valves per cylinder.

     

    What Is Variable Valve Timing (VVT)?

    This technology enhances engine performance by intelligently controlling the timing of valve opening and closing. It helps to:

    • Improve fuel efficiency
    • Increase torque and reduce emissions
    • Minimize engine noise

     

    Symptoms of Faulty Valves in a Car

    • Knocking or ticking sounds from the engine, especially at higher RPMs
    • Loss of engine power due to poor compression
    • Blue smoke from the exhaust (a sign of oil leaking into the combustion chamber)
    • Excessive oil consumption without a clear cause
    • Engine shaking during idle or startup
    • Popping sounds from the exhaust due to incomplete combustion

     

    Tips to Maintain Your Engine Valves

    To avoid valve damage and ensure their longevity, follow these tips:

    • Change engine oil regularly to maintain lubrication and prevent valve seal wear.
    • Use high-quality oil recommended by the vehicle manufacturer.
    • Avoid prolonged high-speed driving which can stress the valves.
    • Inspect spark plugs regularly, as faulty plugs affect combustion and valve performance.
    • Watch for unusual exhaust colors (like blue smoke) and consult a mechanic promptly.
    • Perform regular cooling system maintenance, as overheating can lead to valve damage.

     

    VIN Breakdown, What Your Vehicle’s 17 Characters Really Mean

    VIN Breakdown, What Your Vehicle’s 17 Characters Really Mean

    Table Of Contents:

    • What Is a Vehicle Identification Number (VIN)?
    • Where to Find Your Car’s VIN
    • What Does the VIN Reveal?
    • Why Is the VIN Important When Buying a Used Car?
     

    One mysterious number holds your car’s secrets—its origin, engine, safety, and past. Discover how the VIN unlocks everything you need to know before buying, selling, or trusting your vehicle.

     

    What Is a Vehicle Identification Number (VIN)?

    • The Vehicle Identification Number (VIN) is a unique 17-character code composed of letters and numbers, assigned to every motor vehicle at the time of manufacture.
    • It serves as the car’s digital identity, and no two vehicles in the world share the same VIN.
    • This code contains essential information such as the manufacturer’s name, country of origin, engine type, model year, and the vehicle’s serial number. It’s a trusted reference for identifying the exact specifications of a car, making it a critical tool for inspection, registration, and insurance processes

     

    Where to Find Your Car’s VIN

    Here are the most common places to locate your VIN:

    1. Windshield (Driver’s Side)

       The VIN is clearly visible on the dashboard and can be seen from outside the vehicle through the windshield.

     

    1. Driver’s Door or Door Frame

       Open the door and look for a sticker or metal plate, usually affixed to the inner frame.

     

    1. Official Documents

       Such as the vehicle registration certificate, insurance policy, or maintenance records. This method is useful if the vehicle isn’t physically available.

     

    1. Engine Block

       On some models, the VIN is engraved on the engine itself. You’ll need to open the hood to inspect it.

     

    1. Chassis (Undercarriage)

       The VIN may be stamped on the chassis beneath the car, which might require lifting the vehicle or using a mirror to view it.

     

    1. Online Lookup

       Certain websites allow you to search for the VIN using the license plate number, depending on the availability of databases in your country.

     

    What Does the VIN Reveal?

    Each segment of the VIN provides specific information about the vehicle:

    1. WMI (First Three Characters): Identifies the country of origin and the manufacturer.
    2. VDS (Characters 4–8): Describes the vehicle’s attributes such as model, engine type, and transmission system.
    3. Ninth Character: Used to verify the authenticity of the VIN.
    4. Tenth Character: Indicates the model year.
    5. Eleventh Character: Specifies the assembly plant.
    6. VIS (Characters 12–17): Represents the vehicle’s unique serial number for precise identification.

     

    Why Is the VIN Important When Buying a Used Car?

    Knowing the VIN is crucial for several reasons:

    1. Identity and Specification Verification: Ensures the car matches the seller’s claims.
    2. Access to Vehicle History: Reveals maintenance records, accident history, or previous thefts.
    3. Recall Checks: Shows whether the manufacturer has issued any safety-related recalls.
    4. Legal Assurance: Detects any tampering or forgery in the vehicle’s identity.
    5. Insurance and Financing: Required by insurance companies and banks to provide quotes or loans.
    6. Market Value Assessment: Helps accurately evaluate the car’s resale value.
    7. Safety and Reliability: Confirms the vehicle hasn’t sustained damage that compromises road safety.

     

    Hidden Electrical Drain in Your Car, Causes, Symptoms, and Solutions

    Hidden Electrical Drain in Your Car, Causes, Symptoms, and Solutions

    Table Of Contents:

    • Understanding Electrical Issues in Cars
    • Key Components of a Car’s Electrical System
    • Common Causes of Electrical Problems
    • Symptoms of Electrical Leakage
    • How to Fix Electrical Leakage
    • Tips to Prevent Electrical Leakage

     

     


     

    Have you noticed your car battery draining quickly or your lights dimming unexpectedly? The culprit might be a hidden electrical leak that threatens your vehicle’s overall performance. So how can you detect it—and fix it?

     

    Understanding Electrical Issues in Cars

    An electrical leak in a car refers to the unintended loss of electrical energy due to a fault in one of the components—such as wiring, the battery, or internal system damage. This malfunction leads to abnormal power consumption, negatively impacting the electrical system and other vital functions like engine ignition, lighting, and auxiliary systems.

     

    Key Components of a Car’s Electrical System

    The vehicle’s electrical system consists of several essential parts, including:

    • Battery: The primary source of electrical energy required to start and operate the car. Batteries come in two types: dry-cell and wet-cell.
    • Alternator: Responsible for recharging the battery while the car is running and generating the electricity needed for various systems.
    • Engine: The core of vehicle operation, divided into:
    • Internal combustion engine: Most common in modern vehicles.
    • External combustion engine: Previously used in older models.
    • Carburetor: Delivers fuel to the engine to enable ignition and operation.

     

    Common Causes of Electrical Problems

    Electrical leakage can significantly affect vehicle efficiency. Key causes include:

     

    - Damaged Battery

    One of the most frequent sources of electrical drain. Car batteries typically last 3 to 5 years, after which their ability to hold a charge diminishes. Excessive use or exposure to harsh environmental conditions may cause internal damage, increasing the risk of leakage.

     

    - Wire Corrosion

    Electrical wires degrade over time due to moisture, dirt, and high temperatures. Weather conditions or accidents may damage insulation, leading to energy loss.

     

    - Excessive Electrical Devices

    Using additional devices like chargers or entertainment systems can draw abnormal power from the battery—even when the car is off. Some devices may continue consuming electricity or remain in standby mode, draining energy.

     

    - Faulty Alternator

    If the alternator or its components (such as brushes) malfunction, the battery may not recharge properly, causing electrical leakage. This prevents the battery from receiving adequate charge and forces it to consume unnecessary power when idle.

     

    Symptoms of Electrical Leakage

    Signs that your car may be experiencing an electrical leak include:

    1. Difficulty starting the engine or needing multiple attempts.

    2. Dim or flickering headlights and interior lights.

    3. Rapid battery depletion.

    4. Burning smell or smoke, indicating a short circuit or leakage.

     

    How to Fix Electrical Leakage

    Resolving this issue requires accurate diagnosis. For minor cases like loose wires, manual repair using crimp connectors or wire soldering with heat-shrink tubing may suffice. For more complex issues—such as alternator failure, battery damage, or wire corrosion—it's best to consult a specialized workshop. Key steps include:

     

    - Battery Inspection

    Check the battery’s health, charge retention, and internal condition.

     

    - Electrical System Check

    Inspect wires and components for damage or corrosion that could cause leakage. Immediate repair is essential upon detection.

     

    - Using a Leakage Tester

    Technicians use specialized tools to pinpoint the exact location of the leak quickly and accurately, streamlining the repair process.

     

    - Repair or Replacement

    Once the source is identified, damaged parts—wires, battery, or alternator—are repaired or replaced. Simple issues can be fixed manually using precise techniques like soldering and crimping with heat-shrink insulation for safety and durability.

     

    Tips to Prevent Electrical Leakage

    To maintain your car’s electrical system and avoid future issues, follow these guidelines:

    1. Conduct regular electrical system checks during maintenance to ensure wire and battery integrity.

    2. Turn off unnecessary electrical devices when not in use to reduce power consumption.

    3. Monitor battery condition and replace it when signs of weakness or end-of-life appear.

    4. Use high-quality replacement parts to ensure long-term performance and prevent future breakdowns.