BAIC X7 Honor
The BAIC X7 Honor is one of the most prominent sports utility vehicles (SUVs) offered by the Chinese automaker BAIC. Since its launch in 2020, this vehicle has gained widespread appreciation due to its modern design and advanced technical specifications.
The BAIC X7 Honor features an exterior design that blends elegance and modernity. The vehicle is equipped with LED headlights with daytime running lights, along with new front air vents and hidden door handles that enhance the aesthetic appeal and aerodynamics of the design. The side mirrors are electrically adjustable, providing added convenience for the driver.
The BAIC X7 Honor is powered by a 1.5-liter turbocharged engine, producing 180 horsepower and 275 Nm of torque. The engine is mated to a 7-speed dual-clutch automatic transmission (7DCT) and features front-wheel drive. The car is notable for its fuel efficiency of 16.6 km/l, making it an economical choice for families.
The BAIC X7 Honor offers a luxurious interior equipped with Nappa leather seats, with power-adjustable front seats. The front seats also come with heating and cooling functions, while a panoramic sunroof enhances the spacious feel and allows natural light inside.
The vehicle is equipped with three smart interactive screens, including a 12.3-inch central touchscreen for the infotainment system and a 12.3-inch digital instrument cluster. It also supports features such as:
The BAIC X7 Honor prioritizes safety, offering:
The 2024 BAIC X7 Honor is available in the Saudi Arabian market with a starting price of 86,900 SAR, going up to 99,935 SAR after including Value Added Tax (VAT). The offer includes free maintenance for three years or up to 60,000 km at the authorized dealer, subject to terms and conditions.
The BAIC X7 Honor is an ideal choice for those seeking an SUV that combines elegant design, strong performance, and advanced technology. With a wide range of features and safety systems, this vehicle provides a premium driving experience, catering to both families and individuals.
For more details, visit the official website of Saleh Cars:
salehcars.com

table of contents:
|
You might suddenly notice thick smoke billowing from your car while driving, sparking concern and indicating a potential mechanical issue. What are the common causes behind this smoke?
To assess an engine’s condition before purchasing a used car, follow these steps to ensure it runs efficiently and lacks internal problems:
1. Start the Engine and Observe the Exhaust: If thick smoke appears upon ignition, it may signal combustion issues or fluid leaks.
2. Warm Up the Engine: Let it run for 5 minutes to reach operating temperature, then press the accelerator repeatedly. Persistent smoke post-warm-up is abnormal.
3. Test Drive: Monitor the exhaust during acceleration, using the rearview mirror for clarity.
4. Rev the Engine: Shift to "Park," release the brakes, and rev the engine for 30+ seconds. Smoke afterward could indicate internal wear or damage.
5. Turbocharged Engines: Smoke may stem from turbo system leaks rather than the engine itself—professional inspection is advised.
Thick smoke at startup often points to underlying issues requiring attention:
1. Coolant Leak:
- Caused by a blown head gasket or cracked cylinder head, allowing coolant into combustion chambers.
- White smoke and coolant loss may lead to overheating and severe engine damage.
2. Worn Piston Rings or Valve Seals:
- Oil leaking into combustion chambers burns with fuel, producing white smoke.
- Untreated, this accelerates engine wear.
3. Faulty Fuel Injectors:
- Over-fueling due to injector leaks results in unburned fuel exiting as white smoke.
4. Cracked Cylinder Head:
- Coolant mixes with fuel, creating sweet-smelling white smoke and risking engine failure.
5. Cracked Engine Block:
- Rare but severe, causing oil/coolant mixing and white smoke.
6. Overfilled Engine Oil:
- Excess oil burns in combustion, emitting white smoke. Always follow manufacturer specs.
Exhaust smoke colors reveal specific issues:
White Smoke:
- Normal in cold weather (condensation), but persistent smoke suggests coolant burning (e.g., head gasket failure).
Blue Smoke:
- Indicates oil burning due to worn piston rings or valve seals.
Black Smoke:
- Excess fuel burning from clogged air filters, faulty injectors, or sensor issues.
Gray Smoke:
- Complex causes: turbocharger oil leaks or transmission fluid entering combustion (check oil levels).
If white smoke persists, act promptly:
1. Professional Diagnosis: Visit a mechanic for engine and exhaust system checks.
2. Coolant System Inspection: Test for head gasket/cylinder head leaks; replace damaged parts.
3. Check Oil Levels: Top up if low, and inspect for leaks.
4. Exhaust System Repair: Replace faulty components to ensure proper airflow.
5. Fuel System Maintenance: Clean/replace injectors and filters to optimize combustion.
6. Routine Maintenance: Regular engine, cooling, and exhaust checks prevent long-term damage.
Yes! Ignoring white smoke can cause progressive engine damage. For example, coolant leaks via a failed head gasket may corrode internal parts. Address the issue early to avoid costly repairs.

As part of strengthening strategic partnerships among leading companies in the automotive sector, Saleh Cars Group, in collaboration with Petromin, hosted a distinguished official event to unveil the all-new Commander 2026 model.
The ceremony was attended by:
Alongside a number of automotive industry enthusiasts.
The event took place at Saleh Cars Group’s headquarters in Riyadh – Al Thumama Branch, at 3:30 PM on Tuesday, October 14, 2025.
The launch showcased the vehicle’s latest features and advanced technologies, reflecting both companies’ vision to deliver cutting-edge models to the Saudi market.

Table Of Contents:
|
The engine is the car’s core, and cylinders convert fuel into motion. Knowing their role helps drivers and enthusiasts make smart choices in buying, maintaining, and understanding vehicle performance.
A cylinder is a precisely engineered, cylindrical chamber typically made from cast iron or aluminum alloys to withstand high temperatures and pressures. Inside it, the piston moves in a reciprocating motion—up and down. Engines vary in the number of cylinders, usually ranging from 3 to 12, and this number directly affects the engine’s performance, smoothness, and efficiency.
The core energy-generating process occurs within each cylinder through a four-stroke combustion cycle:
- Intake Stroke: The intake valve opens, and the piston moves downward, creating a vacuum that draws in the air-fuel mixture.
- Compression Stroke: Both intake and exhaust valves close, and the piston moves upward, compressing the mixture to increase its energy density and flammability.
- Power Stroke: The spark plug ignites the compressed mixture, causing an explosion that forces the piston downward with great force—this motion is ultimately converted into rotational energy that drives the wheels.
- Exhaust Stroke: The exhaust valve opens, and the piston moves upward again, expelling combustion gases from the cylinder to prepare for the next cycle.
Lightweight and compact
Highly fuel-efficient with low manufacturing and maintenance costs
May suffer from limited performance and vibrations, though modern technology has significantly mitigated these issues
Ideal for small urban vehicles
Most common configuration
Excellent balance between performance, efficiency, and operating cost
Provides sufficient power for daily use, though less powerful and smooth than larger engines
Standard choice for compact and mid-sized cars
Relatively rare design
Combines traits of 4- and 6-cylinder engines
Offers good torque at low speeds and a distinctive sound
May experience dynamic imbalance and vibrations
Often found in select European models
Delivers strong and smooth performance due to excellent dynamic balance
Minimal vibrations and a refined sound
Higher fuel consumption, cost, and weight
Best suited for luxury, mid-sized, and sports vehicles
Falls under high-performance engine category
Provides immense power and torque with ultra-smooth operation
High fuel consumption and expensive to buy and maintain
Used in large trucks, sports cars, and luxury vehicles
Here are reliable methods to identify the number of cylinders in your car:
- Check the owner's manual or technical guide provided with the vehicle
- Visit the manufacturer’s official website for full specifications
- Use search engines by entering your car’s make and model along with “number of cylinders”
- Results from specialized websites will provide accurate details
- In some countries, official agencies issue certificates listing vehicle specifications, including cylinder count
- You can request this document from the traffic department or vehicle registration authority
- Open the hood and look for a label with technical information, which often includes the number of cylinders
- Typically, each cylinder has one spark plug
- Counting the spark plugs can give an estimate, though not always accurate—some engines like V8s may have two plugs per cylinder
A 4-cylinder engine is more fuel-efficient and suitable for daily driving, while a 6-cylinder engine offers greater power and smoothness, ideal for high-performance and highway driving—but it consumes more fuel.
Not anymore. Thanks to modern technologies like turbocharging, 3-cylinder engines can deliver performance comparable to traditional 4-cylinder engines while maintaining superior fuel efficiency—making them a great choice for small cars.
It depends on your priorities. If fuel economy and operating costs are your main concern, go for a 4-cylinder.
If you value higher power, smoother performance, and better highway or towing capabilities—and don’t mind the extra fuel and maintenance costs—a 6-cylinder is your best bet.

Table Of Contents:
|
Brake fluid is a hydraulic liquid used in braking systems to transfer the force generated by pressing the brake pedal to the calipers, which then clamp onto the brake discs to stop the vehicle. This fluid is characterized by unique properties, most notably its high resistance to heat without boiling, and its incompressibility, which ensures precise and effective brake response under various driving conditions.
Brake fluid does more than just transmit hydraulic pressure. It performs several critical functions that help maintain system efficiency and driving safety, including:
1- Protecting brake system components from corrosion and rust
2- Absorbing heat generated by friction, helping preserve performance
3- Resisting boiling at high temperatures, preventing brake fade in extreme conditions
Brake fluid types differ in their heat tolerance, moisture absorption rates, and compatibility with various braking systems. Key differences include:
Selecting the appropriate brake fluid requires considering several factors to ensure compatibility and optimal performance:
- Vehicle specifications: Always refer to the owner's manual for the manufacturer’s recommended type
- Driving conditions: For high-temperature environments or heavy loads, DOT 4 or DOT 5.1 is preferable
- System compatibility: DOT 5 is not compatible with DOT 3 or DOT 4
- Brand reliability: Choose a trusted brand for long-term performance and stability
Over time, brake fluid deteriorates due to moisture absorption and contamination, which affects braking performance. Regular checks are essential. Practical methods include:
- Tool: Small electronic device with a probe
- Method: Dip the probe into the reservoir after warming the fluid slightly by driving
- Result: If moisture exceeds 3%, replace the fluid immediately
- Concept: Pure fluid doesn’t conduct electricity, but contaminated fluid does
- Method: Some devices measure conductivity to assess fluid quality
- Result: Low resistance indicates contamination and the need for replacement
- Tool: A strip that changes color based on fluid condition
- Steps:
- Background: Brake line corrosion releases copper into the fluid
- Method: Special test strips detect copper levels
- Result: If copper exceeds 200 ppm, it signals early corrosion and fluid replacement is necessary
Mixing is not recommended, especially if the chemical compositions are incompatible.
It’s advisable to replace it every two to three years, or every 60,000 kilometers.
Low brake fluid can lead to:

Table Of Contents:
|
Did you know that the water pump could be the cause of your car’s engine overheating suddenly? This small component functions as the heart of the cooling system. So, how can you tell if it's malfunctioning?
1. Circulating Coolant
The water pump circulates coolant through the engine and radiator to absorb heat and carry it away from the engine's internal parts, keeping the temperature within a safe range.
2. Engine Temperature Control
The continuous flow of coolant ensures that the engine stays at an optimal temperature, improving its efficiency and reducing the likelihood of damage caused by excessive heat.
3. Even Heat Distribution
The pump prevents the formation of hot spots within the engine, which could deform or damage metal parts over time.
4. Supporting the Cooling System Components
The water pump helps the coolant reach the radiator, where it is cooled before being recirculated, and ensures that any coolant loss is replenished through the reserve tank.
The water pump consists of several parts that work together to ensure the system operates efficiently:
1. Pump Housing
The outer casing, usually made from aluminum or cast iron, contains channels through which the coolant flows.
2.Rotating Shaft
The shaft connects the pump to the engine belt or gears, transferring the motion to the internal fan.
3. Fan
A wheel with blades that spins to push the coolant through the cooling system.
4. Bearings
These reduce friction during the rotation of the shaft, extending the pump's lifespan.
5.Mechanical Seal
This prevents coolant leakage, and damage to this seal is one of the most common causes of pump failure.
6. Pulley
The pulley connects the pump to the engine belt to transfer motion.
7. Outer Casing
This ensures that the pump is sealed tightly and prevents coolant from leaking at the connection points with the engine.
The water pump operates according to the following steps:
Warning signs that the water pump may be failing include:
1. Coolant Leaks
If you notice coolant puddles or colored spots under the car, it indicates a malfunction of the mechanical seal or casing.
2. Squealing or Grinding Sounds
These noises suggest that the bearings are damaged or that the internal parts are rubbing against each other.
3. Overheating Engine
If the pump is unable to circulate the coolant properly, the engine temperature could rise dangerously.
4. Corrosion and Rust
Wear and tear from corrosion can reduce the efficiency of the pump, possibly clogging the channels.
5. Frozen Pump in Winter
Using unsuitable coolant in winter could lead to the pump freezing, rendering it inoperable.

Table Of Contents:
|
Did you know faulty spark plugs could be the hidden reason behind poor engine performance? Discover the warning signs before they lead to bigger, costly problems!
When spark plugs start losing efficiency, the impact goes far beyond just ignition—your entire driving experience can suffer. Here are some of the most common and noticeable effects:
Spark plug failure isn’t always due to age or mileage external factors often accelerate wear and reduce their lifespan. The most common causes include:
To prolong spark plug lifespan and prevent hard-start issues, follow these simple yet effective tips: