BAIC X7 Honor
The BAIC X7 Honor is one of the most prominent sports utility vehicles (SUVs) offered by the Chinese automaker BAIC. Since its launch in 2020, this vehicle has gained widespread appreciation due to its modern design and advanced technical specifications.
The BAIC X7 Honor features an exterior design that blends elegance and modernity. The vehicle is equipped with LED headlights with daytime running lights, along with new front air vents and hidden door handles that enhance the aesthetic appeal and aerodynamics of the design. The side mirrors are electrically adjustable, providing added convenience for the driver.
The BAIC X7 Honor is powered by a 1.5-liter turbocharged engine, producing 180 horsepower and 275 Nm of torque. The engine is mated to a 7-speed dual-clutch automatic transmission (7DCT) and features front-wheel drive. The car is notable for its fuel efficiency of 16.6 km/l, making it an economical choice for families.
The BAIC X7 Honor offers a luxurious interior equipped with Nappa leather seats, with power-adjustable front seats. The front seats also come with heating and cooling functions, while a panoramic sunroof enhances the spacious feel and allows natural light inside.
The vehicle is equipped with three smart interactive screens, including a 12.3-inch central touchscreen for the infotainment system and a 12.3-inch digital instrument cluster. It also supports features such as:
The BAIC X7 Honor prioritizes safety, offering:
The 2024 BAIC X7 Honor is available in the Saudi Arabian market with a starting price of 86,900 SAR, going up to 99,935 SAR after including Value Added Tax (VAT). The offer includes free maintenance for three years or up to 60,000 km at the authorized dealer, subject to terms and conditions.
The BAIC X7 Honor is an ideal choice for those seeking an SUV that combines elegant design, strong performance, and advanced technology. With a wide range of features and safety systems, this vehicle provides a premium driving experience, catering to both families and individuals.
For more details, visit the official website of Saleh Cars:
salehcars.com

Table Of Contents:
|
Brake fluid is a hydraulic liquid used in braking systems to transfer the force generated by pressing the brake pedal to the calipers, which then clamp onto the brake discs to stop the vehicle. This fluid is characterized by unique properties, most notably its high resistance to heat without boiling, and its incompressibility, which ensures precise and effective brake response under various driving conditions.
Brake fluid does more than just transmit hydraulic pressure. It performs several critical functions that help maintain system efficiency and driving safety, including:
1- Protecting brake system components from corrosion and rust
2- Absorbing heat generated by friction, helping preserve performance
3- Resisting boiling at high temperatures, preventing brake fade in extreme conditions
Brake fluid types differ in their heat tolerance, moisture absorption rates, and compatibility with various braking systems. Key differences include:
Selecting the appropriate brake fluid requires considering several factors to ensure compatibility and optimal performance:
- Vehicle specifications: Always refer to the owner's manual for the manufacturer’s recommended type
- Driving conditions: For high-temperature environments or heavy loads, DOT 4 or DOT 5.1 is preferable
- System compatibility: DOT 5 is not compatible with DOT 3 or DOT 4
- Brand reliability: Choose a trusted brand for long-term performance and stability
Over time, brake fluid deteriorates due to moisture absorption and contamination, which affects braking performance. Regular checks are essential. Practical methods include:
- Tool: Small electronic device with a probe
- Method: Dip the probe into the reservoir after warming the fluid slightly by driving
- Result: If moisture exceeds 3%, replace the fluid immediately
- Concept: Pure fluid doesn’t conduct electricity, but contaminated fluid does
- Method: Some devices measure conductivity to assess fluid quality
- Result: Low resistance indicates contamination and the need for replacement
- Tool: A strip that changes color based on fluid condition
- Steps:
- Background: Brake line corrosion releases copper into the fluid
- Method: Special test strips detect copper levels
- Result: If copper exceeds 200 ppm, it signals early corrosion and fluid replacement is necessary
Mixing is not recommended, especially if the chemical compositions are incompatible.
It’s advisable to replace it every two to three years, or every 60,000 kilometers.
Low brake fluid can lead to:

Table Of Contents:
|
Valves are among the most critical components of the internal combustion engine. But what exactly are they? And how can you maintain them properly?
This technology enhances engine performance by intelligently controlling the timing of valve opening and closing. It helps to:
To avoid valve damage and ensure their longevity, follow these tips:

Table Of Contents:
|
Did you know faulty spark plugs could be the hidden reason behind poor engine performance? Discover the warning signs before they lead to bigger, costly problems!
When spark plugs start losing efficiency, the impact goes far beyond just ignition—your entire driving experience can suffer. Here are some of the most common and noticeable effects:
Spark plug failure isn’t always due to age or mileage external factors often accelerate wear and reduce their lifespan. The most common causes include:
To prolong spark plug lifespan and prevent hard-start issues, follow these simple yet effective tips:

Table Of Contents:
|
Thick Smoke While Driving? Here’s What It Could Mean, You may suddenly notice thick smoke coming from your car while driving—an alarming sign that often indicates a technical issue. One possible cause involves your vehicle’s air conditioning system, particularly if it has a Freon leak or malfunction. But what exactly is Freon, and how does it work?
Freon plays a crucial role in cooling your vehicle’s interior by operating as a thermal transfer medium in a continuous cycle:
1. Compression Stage
The compressor compresses Freon gas, increasing its temperature and pressure.
2. Condensation Stage
The high-pressure gas moves to the condenser, where it loses heat and becomes a high-pressure liquid.
3. Expansion Stage
The liquid passes through an expansion valve, where its pressure drops suddenly, causing it to evaporate and become a very cold gas.
4. Cooling Stage
This cold gas enters the evaporator, where it absorbs heat from the warm cabin air. The now-cooled air is circulated into the car interior.
5. Cycle Repeat
The Freon gas returns to the compressor, and the cycle continues.
This process is:
Dynamic and continuous while the A/C is running
Sealed with no expected Freon loss
Dependent on physical changes in the Freon between gas and liquid states
Powered by the engine, which drives the compressor
The system’s performance depends on:
1. R-12 Freon
Once common, R-12 was phased out after 1994 due to its harmful environmental impact when leaked.
2. R-134a Freon
A replacement for R-12, it is less harmful to the environment but slightly less efficient in cooling.
3. R-1234yf Freon:
Introduced around 2014 and widely adopted after 2021, this is the most eco-friendly option. It decomposes into non-toxic compounds within 10 minutes when released into the air and offers cooling efficiency similar to R-134a.
1. Warm Air from A/C Vents, The most noticeable sign—reduced cooling efficiency or warm air blowing even with the A/C set to max.
2. Compressor Malfunction
With low Freon, the compressor may shut down to avoid damage. Signs include:
3. Visible Freon Leak:
Freon is mixed with lubricant oil, so leaks often leave oily, dark, sticky stains near:
4. Frozen A/C Lines, a drop in system pressure due to Freon loss can cause the evaporator or suction lines to freeze.
5. Increased Fuel Consumption, The compressor may run for longer or more frequently to compensate for poor cooling, placing extra load on the engine and raising fuel use.
6. Chemical Smell Inside Cabin, Large leaks can release a chemical, ether-like odor noticeable when the A/C is turned on.
7. Low-Pressure Warning on Dashboard, in modern cars with electronic monitoring, a dashboard warning may indicate low refrigerant pressure.
1. Turn off the A/C immediately to prevent compressor damage.
2. Visit a certified technician as soon as possible.
3. Don’t add Freon yourself without a thorough system check.
4. Repair any leaks before recharging the system.
5. Use only the manufacturer-recommended Freon type.

Table Of Contents:
|
Have you noticed your car battery draining quickly or your lights dimming unexpectedly? The culprit might be a hidden electrical leak that threatens your vehicle’s overall performance. So how can you detect it—and fix it?
An electrical leak in a car refers to the unintended loss of electrical energy due to a fault in one of the components—such as wiring, the battery, or internal system damage. This malfunction leads to abnormal power consumption, negatively impacting the electrical system and other vital functions like engine ignition, lighting, and auxiliary systems.
The vehicle’s electrical system consists of several essential parts, including:
Electrical leakage can significantly affect vehicle efficiency. Key causes include:
One of the most frequent sources of electrical drain. Car batteries typically last 3 to 5 years, after which their ability to hold a charge diminishes. Excessive use or exposure to harsh environmental conditions may cause internal damage, increasing the risk of leakage.
Electrical wires degrade over time due to moisture, dirt, and high temperatures. Weather conditions or accidents may damage insulation, leading to energy loss.
Using additional devices like chargers or entertainment systems can draw abnormal power from the battery—even when the car is off. Some devices may continue consuming electricity or remain in standby mode, draining energy.
If the alternator or its components (such as brushes) malfunction, the battery may not recharge properly, causing electrical leakage. This prevents the battery from receiving adequate charge and forces it to consume unnecessary power when idle.
Signs that your car may be experiencing an electrical leak include:
1. Difficulty starting the engine or needing multiple attempts.
2. Dim or flickering headlights and interior lights.
3. Rapid battery depletion.
4. Burning smell or smoke, indicating a short circuit or leakage.
Resolving this issue requires accurate diagnosis. For minor cases like loose wires, manual repair using crimp connectors or wire soldering with heat-shrink tubing may suffice. For more complex issues—such as alternator failure, battery damage, or wire corrosion—it's best to consult a specialized workshop. Key steps include:
Check the battery’s health, charge retention, and internal condition.
Inspect wires and components for damage or corrosion that could cause leakage. Immediate repair is essential upon detection.
Technicians use specialized tools to pinpoint the exact location of the leak quickly and accurately, streamlining the repair process.
Once the source is identified, damaged parts—wires, battery, or alternator—are repaired or replaced. Simple issues can be fixed manually using precise techniques like soldering and crimping with heat-shrink insulation for safety and durability.
To maintain your car’s electrical system and avoid future issues, follow these guidelines:
1. Conduct regular electrical system checks during maintenance to ensure wire and battery integrity.
2. Turn off unnecessary electrical devices when not in use to reduce power consumption.
3. Monitor battery condition and replace it when signs of weakness or end-of-life appear.
4. Use high-quality replacement parts to ensure long-term performance and prevent future breakdowns.

Table Of Contents:
|
Many drivers overlook the importance of radiator coolant color, assuming it's just cosmetic. But choosing the wrong type can lead to serious engine damage. So, what are the differences between coolant types—and which one is right for your car?
Radiator coolant, also known as antifreeze, is a chemical compound used to regulate engine temperature. Its primary function is to prevent the engine from overheating in hot conditions or freezing in cold ones, protecting internal components from corrosion and damage.
Coolant is typically made from ethylene glycol or propylene glycol, with added corrosion inhibitors and thermal stabilizers.
Coolants used in radiator systems fall into three main categories, each with distinct properties that directly affect engine performance and efficiency:
Although easily accessible, using plain water in the cooling system is unsafe. It contains high levels of salts and impurities that accumulate inside the radiator and engine components, causing corrosion, rust, and long-term damage.
Water also boils quickly and freezes easily, making it unsuitable for temperature fluctuations.
Green coolant is a balanced mixture of water and specially formulated chemicals designed to cool the engine efficiently without reacting with its metal components. Key features include:
- Free from salts and impurities, preventing corrosion and rust
- Boiling point raised to 120°C, making it effective in high-temperature conditions
- Commonly used in older vehicles or those with iron-based components
- Safe and effective, though its lifespan is shorter than other types
Red coolant shares the impurity-free nature of green coolant but offers enhanced features:
- Contains agents that prevent freezing in extremely low temperatures
- Free from silicates, which can cause long-term corrosion in engine parts
- Used in modern vehicles requiring extra protection for sensitive metal components
- Longer lifespan than green coolant, ideal for cold climates
Boiling coolant is a serious warning sign of a malfunctioning cooling system. Ignoring it can damage vital car components. Common causes include:
All coolant types can decrease over time due to mechanical or operational issues affecting system efficiency. Key causes include:
Coolant replacement depends on its type and chemical composition:
- Red Coolant: Recommended every 4 to 5 years due to its long-lasting organic formula
- Green Coolant: Should be replaced every 2 to 3 years, as its protective agents degrade over time
Green contains silicates and has a shorter lifespan; red is silicate-free and lasts longer.
No. Chemical reactions between types can damage the cooling system.